陕西无新增新冠肺炎确诊病例新增死亡1例

陕西无新增新冠肺炎确诊病例新增死亡1例

中新网3月12日电 据陕西省卫健委网站消息,2020年3月11日8时至12日8时,陕西无新增新冠肺炎确诊病例,新增疑似病例0例,死亡1例。

截至3月12日8时,陕西累计报告新冠肺炎确诊病例245例(232例治愈出院,2例死亡)。全省现有疑似病例0例。全省新增密切接触者2人(协查),累计18960人,均集中医学观察。新增解除密切接触者7人,累计解除密切接触者18930人。

大众对资产配置的渴望在增加,原来的基金公司、理财公司更多关注的是高净值的客户,有很多长尾客户的需求,实际上并没有真正地被满足到,没有很好地被服务到。这就跟现在发展普惠金融业务,包括对于长尾客户的零售金融业务,整体思路是一致的。

大数据风控模型的思路是,用非常多的弱相关变量,去综合分析客户。即使他之前没有发生过任何借贷行为,我依然可以判断客户的风险。

最后这段语音推给客户,通过IVR来进行交互——这么多步骤,实际上机器人跟客户之间的交互是没有什么延迟的。

简单来说,原来传统的模型、搭建方式,是用逻辑回归,而且主要依据人行征信报告,无非基于客户之前有没有不良记录、欠款,然后判断整体风险,再决定要不要放贷。你会发现很多都是信贷强相关的数据,我用逻辑回归,基本上用不超过10个变量,就可以综合判断了。

花旗银行的数据显示,到2017年的时候,中国的个人可投资资产总额已经达到了188亿以上。估计到2020年底,国内的整体可投资的资产规模将要达到200万亿以上,高净值人群的比重也将上升到49%。

第二步就是机器人的大脑,NLP技术(自然语言处理)。我要准确知道客户到底说了什么,要知道如何回复客户,如何应答。

更多场景应用的案例音频,请持续关注AI金融评论,全场回放视频即将上线。

大数据的风控模型如何搭建?

这次很多金融机构没有办法集中上班,所以也用到大量的智能语音工具。在这个场景下,包括文字坐席、智能IVR(Interactive Voice Response,互动式语音应答)机器人去跟客户产生交互,还有智能质检等。举个例子,这是客户已经逾期的场景。基于现在的疫情,我们在做贷后管理的时候,实际上是会有这样的一些话术可以给到机构的。

首先用到的,可能是非信贷场景下的弱相关变量,就是并不基于信贷场景下来进行分析的。比如说你之前的一些消费行为,浏览行为,你经常喜欢看哪些模块的内容?还有你的社交圈,虽然这些跟信贷不是直接相关,但是可以判断你的整体风险。

全场回放视频即将上线,敬请期待。

除此以外,还有智能风控的智能机器人。大家最先接触到的智能机器人是在一些银行的网点,机器人可以跟你一问一答,产生交互。现在疫情,很多银行客服也是没有办法上班的,所以这个时候有些银行全部都调用的智能语音产品,由机器人提供相应的服务,也是一个趋势。

在美国,我不知道有没有观众考过CFA,它其实主要培养的就是投资经理、理财经理。这些理财经理实际上服务的客群也是VIP的高净值客户。他需要收取高昂的管理费,在这个场景下,他才会为你量身定制去分析你现有的资产状况,在近期之内你有没有一些消费支出,比如孩子上学、出行计划、有购房需求等等;远期你的养老金应该如何来打理等等,他会按照你的整个生命周期进行一个全流程全方案的分配,制定专属的投资建议书。

当我理解了客户的意思,也知道应该如何回答客户的时候,这个时候要把这段文字再转化成语音,这里用到的是TTS(Text To Speech,文本到语音),可以理解成是语音转换器。

另外,银行目前对智能投顾的投入和发展还是相对落后的。同时,公众的认知也有待提高,大家对整个智能投顾(的了解),可能更多是一个概念,知道有这么个东西但实际上并不会信任他,更多的还是把钱直接去给到银行的理财经理,让他们来帮助你来做整体的投资。但随着大众认知的提高,技术的不断提升,一定会有这样的一些平台,能够开发出相适应的一些产品,来服务长尾客户群体。

我们最近的数据也显示,在疫情的作用下,全国整体的团伙欺诈风险都在上升。

另外一个最近常用的场景,是基于很多地方政府或者社区,需要对社区居民回访。

在跟客户产生交互的时候,主要采用的是IVR。当我们听到客户的语音,首先机器人要把它转化成文字,也就是ASR技术(Automatic Speech Recognition,语音识别),微信语音长按转文字就是ASR技术的一种体现。

最后我来综合分析这个客户,我到底要不要给他准入?所以这是两个非常大的区别,用专业一点的话来说,就是传统风控模型,我用到的是信贷强相关的数据。但用到的关键变量解决不了白户的问题,一旦客户缺失某几项信息,模型就是不稳定的,后果就是我对这个客户没有办法进行准确判断。

11日,陕西省一名危重型新冠肺炎患者不幸去世,这是陕西省第2例死亡病例。患者为2月2日公布的确诊病例10,男,77岁,湖北省武汉市人,既往有高血压、肺气肿病史。1月27日患者从海南省三亚市到西安市后,当天被隔离。1月29日出现症状被转运至唐都医院就诊,1月31日报病重,2月2日被确诊为危重型新冠肺炎患者。医院根据患者病情变化,多次组织省级专家及省外专家多学科会诊,调整治疗方案,给予持续呼吸机辅助呼吸、体外膜肺氧合、血浆置换、连续性血液透析滤过、安装临时心脏起搏器等治疗措施,但因患者发病后继发肺纤维化、多器官功能衰竭且合并基础疾病,病情持续加重,经全力抢救无效死亡。

传统的整体营销方式,会有种种局限。那么在整个营销智能化的转型中,人工智能技术可以帮助银行去做的一件事情,就是帮助你更准确地去分析客户的需求,同时给客户去匹配与它需求相对应的产品。这一点实际上是非常关键的。

在智能投顾的发展过程中,实际上非常重要的一环就是KYC(Know your customer,了解你的客户),就是你要知道这个客户的风险是什么样的?他的需求偏好是什么样的?我应该如何给他配置资产?是需要给他多买一些固定收益产品,还是需要进行风险投资?现在是不是有保险的需求?他最近有没有一些贷款的需求?在客户的整个生命周期里,需求的内容都是不一样的,需要真正能够了解客户现在的一些资产状况、近期计划和中长期计划来综合考虑。

为什么现在很多客户可以在不同平台上借贷了?你想要的金融服务除了银行以外,其他机构也能帮你来实现,而且整个的流程是非常顺畅的。为什么可以实现秒批秒贷?实际上都是有这些大数据和人工智能的技术在帮助金融机构去做综合判断。

所以新型智能化风控模型,我们用的是什么方式?

但是传统风控建模,在现有的场景下,它遇到的最强大的挑战就是很多白户。很多年轻人群就属于我们讲的那种,没有之前被服务好的长尾客户。实际上他们之前没有办过信用卡,没有车贷,没有房贷,所以在人行征信上你看不到其他的所有的信贷记录。

如果是个人贷款产生不良,实际上只是一笔;但如果是团伙,一旦金融机构没有准确识别,基本上全部都会是坏账,这对金融机构的压力就会非常大。

雷锋网原创文章,。详情见转载须知。

但是这些客户也有非常强的信贷需求,而且这里边有很多优质客户,比如说工作5年以内的年轻白领,他虽然现在可能没车、没房,甚至没有信用卡,但是他未来一定会是银行非常好的潜在客户。所以其实用传统的风控模型,你会发现,有大量的客户会被银行拒绝掉,拿不到银行服务的。

除此以外,我们还有像智能训练平台,一站式建模,会把刚才提到的很多非常复杂的算法,把它包在整个的自动训练平台里边。要了解算法和场景,需要非常高的学习成本。市场上的风控人员实际上是很稀缺的,我们把百融6年的经验全部包在这个线上化的自动模型训练平台上,对于小白分析师或者刚入行的从业人员来讲,很快就能搭建完一个复杂的机器学习模型,整个模型的开发周期也大幅缩减,基本上是在以天为单位就可以完成一个模型的开发、上线和部署。

目前为止中国的智能投顾还是存在一些很明显的问题。首先整体行业的技术并不成熟,它并没有达到真正根据不同资产状况和全生命周期来制定不同投资计划的水平,现在很多时候还是需要人工介入,没有办法实现我们实现智能化、自动化的财富管理目的。

对于银行来讲,传统的营销方式主要包括物理网点上的营销、地推路演、沙龙会议,用电话或者短信触达,在媒体广告上进行传播。

还是以银行为例,因为银行的例子会丰富一点,也是大家平时能够接触到的。

这些大家都不陌生,但你会发现实际上这里边有一个问题:受制于场景和场地,没有办法触达全量的客户;也不够精准,并不了解这个客户他真正的需求是什么,他只是盲目去推广,广撒网。可能我把传单给到了所有人,但实际上这个客户可能是一个VIP客户,另外一个客户可能根本就不符合我的准入条件,他的资质可能都不是特别好。

所以在整个的模型搭建上,我也不会只用10个左右的变量,甚至可能有成千上万个变量,所以这个时候就需要有人工智能的算法来做支持,它会用到像上面我们看到的GBDT、神经网络等等,这样一些更高级一点的算法,把这些成千上万个变量来进行整合。

这里面我们会用到的技术也比较多,比如说像客户画像,会用到一些相应的营销的评分,来帮助银行来进行整体的客户分层。主要目的就是帮助银行来分析,哪些才是你的目标客户?这些目标客户适合现有的哪些产品?真正达到了一个更精准的效果。而且节省大量的人工,省去和不必要的一些劳动力。

今年的疫情可能会使数据有一些波动,但实际上整体的趋势还是看得非常清晰的。财富其实是增长的,那么如何很好地去进行投资,让财产能够保值增值,这都是大家非常关注的问题。

这项服务目前为止对于个人客户,尤其是散户来讲,还是比较奢侈的。所以智能投顾未来如果真正能够发展起来,它是有非常广阔的场景。

随之上线的就是智能投顾的产品,其实就是对于这些小散户,提供一些真正符合他们需求的智能化建议。